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Foreword

G. I. Taylor found a solution of the gas dynamic
ecuaticns which deseribes the pressure waves produced by an
ex, losion. This description can be used at distances from
the explosive large compared to the explosive dimensions,
but small enough that the shock vrezsure is large compared
to atmesrheric pressure. 1In fact the explosive is assumed
to be a wnoint, and the atmospheric pressure is neglected
compared to the shock pressure, in obtaining the solution.
For these reasons, the solution is called either the "peint
blaat" or "strong shock" solution., The same sciution was
also obtained by J. von Neumann, and a sociution of the same
tyre was Tound for explosions in water by . Primakoff.
Sim:lar solutions were studied by G. Guderley in Zermany.

The two opmosing restriciions on the rangs of wvalidity
of the Taylor "point blast' sclution are cuch that, for
ordinary explosivesg, there is practically no range in which
they are both satisfiled., Tor nuclear explosives, however,
the size of the explosive is so small that there 1s a range
i which this solutlion is useful, This has been demonstrated
by comparing this solution with experimental results.,

In order Lo sxtend ihe solution to greater ranges,
whore the shock 1s wealier, it 1s necessary to take account
of e atmospheric pressure ahead of the shork. The pressnt
recport by Dr. lMorawetz aticmpts to do this by determining a
correction to the "peint blast" solution, which correction
is due to the previously noglected atmospheric pressure.

A system ol linear equations is obtained for the correction
and thelr sclutlon 1z anzlyzed. Finally for the case of
Primakoff's "point blast" in water, the soluticn is given
¢xplicitly and graphs of various gquantitics are given for
poth the orlginal ond the inproved solutions.

It cannot be cxpnccled that the range of validity of
the "weint blast" solunion can be extended very much by such
a perturbation method. However the qualitative and guantita-
tive nature of the corrections con give an indication of the
range at whlch the solution begins to fail, and can also
indicate the manner In which the solution changcs due to
atmosnheric pressure.

Josephh B, Kcller
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FERTURBATTIONS ABCOIT STRONG SFHLERICAL SHOCY. WaVES

Introduction.

%
It has been shown by G. I. Taylor and others that there
are soulutions of the eguations of spherical flow of the form

wuere \ is any constant and U_, C
~/

it ¥ satisfy ncnlinear
h

ordinary differential eguations. These solutions, however,
can represent a flow behiné a shock only if we can neglect
the pressure ahead of the shock, Here we shall study the
Tirst order effects of this pressure and the modifications
nreduced on the original flow,

The problem of finding the flow behiind an expanding
shock wave of constant energy 1is recducesd to sclving som
ordinary differential equations whieh depend only on ¥y, the

atio of the specific aeats. In tiwe case of y = 7, these
eguations can be sgolved and the perturbations in the [low
quantities expressed exvplicitly,.

The differencc between the flow behind a strong shock

an¢ a strong detonation can also be studied in the same way.

e % . o Vg
7w Zauaticns c¢i Mouion.

The equations for spherically symmetric flow are:

i
Uy + uu, + E P, = 0 »
: 2uy _
{1) B, + 0@, ¥ ple, ¥ =) =T ,

(rp'*")t " u(pp“Y)r = o oy

" B T Taylor: The formation of a blast wave by a very
intense explosion. Proceedinns of the Royal Scciety, Series A,
Vol, 201, March 19590, », 159,




2.

whero u is the radlal velocity, p is the pressure, n is the
density and y 1s the ratio of the specific heats of tne gas,

while r is the distance from the origin and t is time.
if we introduce the variables

(2) n

il
e}

P = A%t%r"%p

where A\ 1s any positive constant, we cobtain, using

= dvy _ dr ., dt
th) 1% = =% == =
in {1).

P
- 2 =
Y(Un( 1-U) + UtU, - v i rl—r;l-+u( aU-1) +2ay Y62 = ¢

B N NP _ne, tP tC

(5) - Uy +—T!L(1-U) -2 lla—‘?(l-U) +U-P-§- -2U —E-E+3aU =0

33 > ne tP, L. tC.

= - = e ) - - =

(1-0) - SR(1-0) —Bev pE B vt Eiean = 0
where o = A" T.

Equations (5) may be rewritten as

5~ tP
DUy = A - (1-U3t0, - v lc® &
nc tC 2 tP
(6) D —% B == tU, T 5 ilz--Y“ =5 T
P LP

D 3],:*—\ = E - ytU, - (1-0) -,P-t-

where
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A =(1-0) (1-aU)U = ( 3aU~2y"1(1-a) )2
B= (1-U)(1l-aU)=(y=1){(1-aU) - a}( i-a)lUu- [c.+y"1(1-a)(1~u)'1102

(7)
E= (1-U){2(1+y)(1~alU) = 3y] + y{1-al) - 2aC"

D=(1-U)2-02 .

There are two identities relating A, B, D and E,

0

]

-A + ?gT B(1-U) + D(3aU-;%I {(1-a¥))

(8)
-A + v 1 BE(1-0) + D(3aU=% (1-aU)) = 0 .

The special solutions for spherical flow known as
spherical "progressing" waves are solutions of (6} that are
indepandent of t. They revresent states behind or ahead of
shocks and detonations if the shock or detonation front is
given by 17N = constant., We rcpresent any such flow by Uo(q) ’

CO(Y{) . Po(n) . Then from (6), we find the following

nonlinear ordinary differential equations for Uo’ Co and Po’
DonUovl" Ao
Co _
(9) DOYI'-'C—S = BO
Fon
DR = Bg

where Ao = A(UO,CO) atc.
From the first two equations of (6) we obtain an
equation for C, as a function of U,

iy _ Bl
O AO

The solutions of this equation then yield, through (6),

Po and n as functions of Uo'

e e s sl ik AR P
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We shall consider here flows that are epproximately

et U L TN otk

vrogrossing waves, that is flows given by

(10) U

[}

Uo(y) + eUy(n,t) + 0(e)

Q
il

Coln ) (1+eCq(n,t) +0(e))

P =P (n)(1+ePy(n,t)+ o(e%))

where € 1ls some small rarameter.

Substituting (1C) in (6) and equating first order terms
in € we find

(o] _ . 3
A ) - | .
Ny = () Uy * )c CoCp =D (1=U ) tUy = ¥ "G gD, tPy

c =§°U+§‘°r'c--‘ﬁ§ln'1tu
% = \5), Y1*{5). %O o U1t

C
.Ll) _l i
D tC Ch
0 1t -1
- O o - Yoy T Do Py

~ E\° E\° -1 -1 i :

A\ =( A .
Here (5)11 Saﬁ D>U=Uo(_yl), c=C_(wn)

Cenditions at a Shock,

The boundary conditions on the flow quantitics st a
shock are given by

o({u-z} = - P2

(12) p(a-z; +p = plz2-+p1

N
n
P
Ui 5 AT £ b

TRy e’ = 5+ oly

e e e iy

e
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where z 1s the velocitiy of the shock front, and py» Py 8are
the density and pressure ahead cf the front.

In terms of the variables 7, C, P of (3) equations (12)
become

(13) p(U-Z)24-P = plZ +A" Nt Py

W2 (0-2)% + (1-p2)c® = p%2% 4 (1_u2)c§7\2 n2oé-2e

where

(1) 2z = ety

(15) w8 = (y=1) ()7t ;
63 = wier :

rfrom (13) we see that a spherical progressing wave can
revresent the state behind s shdck for A # 1 only irf cl==p1==0,
that is, only if the shock 1s iufinltely strong. In this
case the vosition of the front is glven by

GRS e s, S T
where H_  1s some constant and thus from {1l) ]
wol Gr . 5 :

We assume now that the deviation in the shock path is
small, and set

(19) n= Ho(l-+eHl(t)) on the shock .

Then from (1lli) we find to first order in e

kit

(20) zZ=1=- etHlt .

oo

Substituting (20) in (13) and setting ' s

2 20
(21) e = 2\ ciﬁo“

e i s L, e

st et



6. !
we ob%ain '
7 o= (1-pd) (1 - eEH, ~epeh 2y |
" = ok .
(22} 02 = w2(142) (1 - ZearHy + & —piily 770
po(14+p7)
> 2  2-za
P = p (1-p")(1-2etH =& Lzt )
- 1+

for n = H (1l+eH (t)).
On the other hand, exvanding U(HO(1+5H1(t),t,a) etc. in
‘powcrs of &€ we find
(23} T(HO(1+sHl(t)),t,e)
4 ) ) ) D)
= Uo(HO(1+eH1kt))) + el (H (1+eH {£)),t) + 5(e )

= U (H.)+el{d_,t)+ eH,H 2o f (t)+—0(82)
5 g .11\...05 Vi 1Yo aq) 1
W;:‘o

=7 (4.)+eU,(H ,t)+¢€ Aq H (*)4*“(82)
“o'“o 1ro? b, =T

O
C(Ho(1+eH1(t) ) ’t'ye)

v r" T | AY BO ‘\ . ~ 2 ]
= Co(do)ty+-ecl(no,t;4-e 5:) nl(t)-+b(8 )

P(Ho(l+eH1(t)),t,e)

r E
= PO(HO) 11+ ePl(E‘ t) +¢ (5—9) Hl(t) + 0(82)“ .
O'V1=H

|

Comparing {23) wita (22) wc have

& N

O

v 2
U{HG) =1 - p

2 2,
w(l+p g

(2L) cZ(iy)

. _ &
P (B, = py(l-uS)

A
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It is then clear from (9) that U, C, and Po/pl are all

functions of N/Ho which devend only on y.
From the filrst order terms in e, we find

A - >
Uy = - (52) (8- (e (0 - ()il
°/n=H
[o)
/Bo 1-2ut 220
e n:HO 2“‘ (1"11' )
Eo 2 2=2a
PﬂHmt)=-(ﬁ;) Hlﬁﬂ-ZUHtM)-it?t .

The perturbation Hl(t) in the position of the shock can
be eliminated and (25) reduced to two conditions on the flow
quantities, namely for W= Hy,
- 2=2a

alUl + Blcl + YlPl = Glt
(26)
a U, + 8,0, + y P, + a,qtU., + B, tC = 5 to2a
2Y1 2o SR b ol B~ b ¥ - 21"V1t 2

where Qs Bl, etc. are all constants.

To find the flow behind a shock we now have to soive
the system of hyperbolic differentlal aquations (11l) of third
order and two conditions (26) on a space-like line, the
ghock pathi. One more condition must be prsscribed. For
examplios, we might prescribe the veloclty cf a particle
corresponding to a given piston motlion which does not differ
riuch from that which maintains a progressing wave, This
would Involve extensive comvbutations although it can be
reduced to a sscond order problem.

Alternately and more naturally, wc may prescribe the
total energy contained in the shock wave, that 1s, the
energy imparted at t = C. This 1s essentially equivalent
to prescribing cne condition on the t-axis, namely that no

e

L

oo H b




8.

onergy 1s addeli. From tha general theory of hyverbolic
equations vie will have thc correct mumber of conditions to
determine thc problem. In fsct this problem can be asolved

in terms of the soluticus of ordinary differential equations.
In the case of a shock wavo In watar Lt can bo =solved
explicitly.

Shock Wave of Constant Encrgy.
First we note that cquations (11) with the boundary

conditions (25) have the spocial solutions,
2-'\
Uy = t°H Y (N + hY (7))

2
Cl = 2 alxal(YL) + hxap( yl
(27)

la)
1l

L = M5 () + R X))

2=2a

H, nht
3

where h is an arbitrary constant and Xll’ X21’ 131 is the
solutlion of

A\°
Yl“a— (15 X ('5/'0 O Xa 1IN (1) X,
- 2y (1- a)Dg g2 o X3
ax o o
(28)  n—g =(%)U Xy * (%)C CoXp = (y=1)(i-al0g Xy
2 =1
cp
S P = i B, (Y
..UO CO 12 Y -Uo = 13
ax EY EY° -1
R (B B e - onii

- 2(1-a)D3(1-U,) X4

which satisfies the initial conditions

et s Mamtd Mt g i AL T

RRCY- 1 St
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ly
(29) Aoatiy) = —FE

b4 ~
and Xl?.’ Xoos XBK is the solution of (28) which satisfies

the initial conditions

Ao 2
xle(Ho) = - (ﬁ‘) - 2(1lep )(1~a)
o =i,
(30) X, o) = - (59) - 2(1-a)
o n=H,
EO
X32(HO) S (1—)—) - L].(l-a) .
o =
=i,

A method for reducing the third order system (20) to
one of second order is contained in the Appendix,.

It turns out that the solution {27) is Just the solution
wnlch satisfles the condition of constant ecnergy if h is
chosen avpropriately.

Let the total cnergy conteined in a spherical shocl:
wave at any time be E(t) where

R{t) p-p
(31} E(t) = Un ‘r (? pu = l re ar .

Here R(t) 1s the position of the shock. 1In terms of the
variables (2) and (3), (31) becomes
o 5 5
= 3 1 U l "' a~-1 CL-P2 5
(32) F(t) "l’-ﬂa f (z LC? + —Y—-I uYL
_4m 1 3
Y_r R7(1)

where 1 = H(t) reprecsents the shock.

it s

e

S| A



10.

In the cuse of an Infinitely strong shock, where P = 0,
E{t) will bc constant only if a = 2/5. Then

H(t) &
(oo T o

If we now consider that sccond order terms in Py can be
neglocted and use the approximations (1€) and (19) we obtain

P 1 Y03
- _ 3émn g . -3
(3 E = %Ej. - S Fon - 4
Pl J
g - LS T E SRS § RPN U
i o =n, .
32me fo Ug 1. \ PE 1 )\m~3
- 3% £ ) §?+F-,POP1+-—EZ—(IJ-JC ) an+ o(e®
0 ' (o]
.

bopy 56 6/5
= B, + sty K /5 i

From the first order terms in e using, from (21),

= 22 2 y2a _ 25 L4/s
e = \° cq HO =T YL1°'| H/
we cbtain
'Uz H r ’ "2
2, [(27%, 1 i - S
(35) Ho ‘{},l. (.2. —C-z. + ‘Y"l PO + g -c-;z + _-_‘"' PoPl
o vl:: & [e o) o]
YUOPO ""3
+ {G,=0,Cq) ©oan
“"‘ZCO" 1" Y"1 n (
] _g Py B8
y(y=1) 9
or, using (24),
% e ,"""._‘ . “: : qa?i;‘ﬁf!s‘!:‘lf: “’

———

- ¢ —— o B

e :
Cowinng W

G

i S [ g o
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2 1 (,
(- 0 1
(36) Hy ~LY—_{—-’ + dr (% 2" ?II) o
o0 G E

v, 1:;,_,,«,,_ -3 _ 1 ,6/5
o} ()0 () - - e

Wo can now show that (27) is just tho solution of (11)
and (25) which satisfies (36) if h 1s chosen appropriately.

Substituting (27) in (36) using r M = H, to first order
on the shock ylclds

1. ﬁll"’}ic- 1 (@] -
e J'\FII"L ’ fmi@%"‘mt) X32
U P -21/5 1 LS R
Yo 0 6/5 9. 1
+ —( -U Vg —={ 7 d.( ) t ‘Y ( e
Cc, XIZ o X22 pl HO) o l & % -52 o ) XBI
o] R ® (o]
YU P =21/5
- g 0 _ 1 6
+—5%(x11Uof~21)}'§I %q d( )"ng-Tt/s
o o/ . O
or
(37) Ah + Ay = Ag
where
2;1-%2) A (™ 3\ y
iy & - +j (%:2'+ Y—l) }’32
o> 7o
Wo, 5 o = ol BB {A T, 1)
-+ H v -l v ——— —
—700\ ~12 0 f-ea’J Py \H, / K
Lo, vt N u E 21/:
yU yet/o \
(33) A, = j a +_}_- + 0( U ) .. (.ﬂ_ n
= 2 mt%:}g 7-1) X31 CEO X117Y X1 Py Ho) HO)

v

e —

t
YO Y 12 i &,



Equation (37) can always be solved for h provided A, # 0.
Thus the first order increnent in the energy vanishes and

=
[\
L]

we have a complete solution of the problem in terms of Xll
ate.

From (7j, (9) and (2L4) we ses thal U  and C  and Po/pl
are functions of N/ H, only and independent of p, while
P/pl is a function of Yl/Ho.

Thus the cosfficients of the equations (28) are functions
of 'L/Ho and hence by (28), (29) and (30) the functions 111’
1211 131, xla’ X 50 ./32 depend on Y]/l only.

Thus A, &nd A, are conatants deponding only on ths
solutiens of {ixed differential equations with fixed initial
conditions, depending only on y.

Substituting (27} in (10) and then in (3) we find

2L (u +et®5 (Y +n X)) |

t"3/5 n‘Z/SUo +§_ et3/5 n'e/g( x ll+ h X].Z)

IR Y

-

t //S n‘Z/SCo-’- % EtB//g ":2/500( X21+ h X22)

o
i
v

b A b I I ) /e .
t /Jn»/zpo,,_?%ev{ »/JPO(X31+}1132) »

M-

Neote that for fixed wn_ the perturbations in u and ¢
increase with r while the vertwrbation in p 1s ce¢onstant.

Now the pressure dies out behind the shock and the
maximum pressure occurs av the shock; thus from (22) and {3)

we Tind

2 e 2
Ppax = 2k Ho B0, (1uP) 675 L (22 1+ E) (3

1
In other words, the meximum pressure is the pressure of the " \‘{
Taylcr point blast wave plus a constant. i

ni

P 1 1

b >7 s

a

k|
b
1
El
1
3
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(Lo)

Shockwave of Constant Energy in Water.

In the case of an explosion in water ths functions Xll
etc. can be calculated explicitiy.

Here we hiave F = A((bp---)Y -1) where A = 3000 etmospheres
o
and vy = 7. Then we replace the last equation of (3) by

P = 2°t%r"2(p+A). In this case,
: . -2/
- 2 e _ 2 2 _ = 2 v,
(39 1,217, o= nd L py = 0 ) (R)

#
is the solution of (9) and (24) . Then A, = 0, B, = 0 while

Eo and Do are constants.

The differ‘ent"ﬂl eq!m_t.ion.q (28) thean haove constans
coefficients in the lowesst order terms and the solutions are
powers of N1 . Saiisfying equations (29) and (30) we find,

Xyy = -1.00197 (ﬁ};)s.u?ea . (E‘;)
Xal - A0 (;{3;-‘).1.6060-,.1;262 (ﬁt);.uwe

+ 2.3597 (;?-— )O°3212

O

-

Asy

\5 .4788

-2.1039 f,.!L
Vlo

R 51&(%\;

= e 4 @ e g




(41}

<1788 0.3212
] 6/5{ ’ (1)5 ‘ (.1‘ }

U t -3553 e 97
1 \ 5, )

"1 .6\)!“\ .14.7(38 003212
6, = rB{-l shL2 (?'IL) +.8323(§L)5 +1.8326 gk)

(o] [o] [e]
. g 3

= PBJ 24062 /n \“106L\ 0?1'92'{;2’/_-\,5-“-7884_& .,‘,‘369/"" \© .3212f
1 L \H,) \H, PN, ) j

Ir Figurcs 1, 2 and 3 we have plottcd the path of the
shock as a function of time and the maximum proessure as a
function of time and distance.

L b modiftied e
include the chemical cucrgy of the dotonation. We then have

for the conditions ascrcss the front
(42} piu-z) = - pyz

2 2
p{u-z) +p = P12 +P

2 YP-
1 2 ) 1 9 &
BTAeIT ¢ Fu B = v oyt By

whore E and El are the enorgy of formation pcr unit mass of
the burnt and unburnt material respectively, and Y1 is the
ratlio of the specific hoats in the unburnt gas. 7In torms of
the variables (3) and (1) the last condition of (42) becomes

— -

b

‘L’.:u.._gﬂbsni

1§§hx‘.ﬁr LA
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~ [ =y {- -~ e pa—
ni(1-2)° + (1-p7)0° = uz i (1-p2)c5+ (B -E

s - o3 A & i A

If we perturb about a strong detonatiocn, i.e. setting

2 S
Ez(l-pg)cg-+E-E1 = 0 we can find the undisturbed flow as a
u

~0
spherical wave and the perturbed flow satisfies (25) with i

different constants for the coefficients of r21-2.

In this case there are again special solutions of the
form (27) where now the initial conditions (29) must be
ad justed sppropriately, However, in thls case we need one
more ccndition on the flow and the special solution will not
in general satlsfy it.

For y = 2 we have U (i) = C_(H)) or u = ¢ at the shock. 1
The unperturbed detonation 1s then a Chapman-Jouguet
detonation. If the perturbed flow is alsco behind a Chapman-
Jouguet detonation we obtain a relation between Ul(Ho)’ Cl(Ho)
and Hl(r). This relation can bs szatisfied by solutions of ; ]
the form (27) for an appropriate choicc of h.

Appendilx.
In this Appendix we will show how equations (28) can be
Q

o iR Ll Vil e

reduced to one second order equation. In general, equations
(6) and the shock conditions {25) can be reduced to a second
order equation involving the unknown shock function Hl(x);

Skt

2 -

From equations (8) we see that

oo () (- O e
v (%)z - (%)Z I:'IU'; =0

and from {(11) then,

FIET
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5 d)(a : aY 4
(A.2) M — =M
Yl ‘. dﬂ l"‘Jo S {
(.2 B\O_ 1 /A\‘)-, b (1-a) 4
(""I (5/11 I'ijokﬁb A1 Yy YT

dxl A C "1
NI T ((‘D‘)J » 2000 (et ) X

(o] A
1 2 i
+ (%)U ¢y Xo = 2v"F ¢ D3H(1-a) X,

If we introduce new depcndont variables,

E5{n) = ;_2,-1- Aotn) + &(n)0,

b SUSIEE-NT LA

(]

E.in)

-

equations (A.2) reduco to,

dg,
(A,L) (l-Uo) YL.CTVT

2
20 -1 A 1-U o) Cc o) 2c
. -1 "0 [A o\
T | s O el (a) % o (_) -2 (1“-.
J [ Uo ﬁ; o D [y Gg D C Uo“o/
2
@ 2C
fA )o 0 w=1 )
-1 = = £y + —p— (1-0)E
\D k& 2 2 " vop, L

- i s

oo b L adsui

E TL—;i AT
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1-U,  dg
-2 nave = (-3 + SpA-1) + 2(1-a))E;) - (2-20)E,
1-u,  dg -1 -1
—t?o—q q—d——nj- = (-3 + ZY (,‘.-1) + 2(1-0))&:1 -UO (2-2(1)5_,3 .

By introducing now depcndent variables we can reduce (A.l)
to n much simpler form. Wc sct

| .{ S
(A.5) y = ‘f i 1L,
H

=TT Y‘
Yo %
3

where H, is any fixed value of n. Thon (A.4) roduces to

2

dg4 . Co }

(A.6) B, “ﬁ?'* K0g1-+L0§2-+2(1-a) EZ 53 = ¢
(&)

Eog = W26 = 0

: - 0
£y = 35
where K0 and L, are functions of y,
2U0-1 1-U (A 0
(A7) Ko(y) = =\ ——52- A+ T, Dy \D)U
\ o

Lo(y)

1 C

and and are constanics
#2 93 )




o]
o
L]

(H.S) '.52 = 3 = 2‘v A+ 2y L2 2(1‘@)
2 2
p,3 = 3 = _T'Y" A+ -——IY_ - 2(1-6) .

The solutions of the third order system (A.6) can also
bz expressed in terms of the solutions of a second order
dirferential equation. We introduce “he function G where

d
(A.Q) iy G = &,
(A.10) G(YG) =0

whero Yo is some fixed value of y.
Then from the last cquations (A.6) we obtain

I3

(A4.11) Ex(y) = £5(Y ) + pyG(y)

]

Substituting (A.11) and (A.12) in the first cquation of (A.6) |
yields

>
B CG- ]
a G . 4G ; o\
(A.13) D0 g;g + ho I + G(ueLo + g2-2a)p3 3 }
(o]

2
. CO o \
= =L E5(Y,) - 2(1~-a) ;g 53\10) .
o

Now £, and 53 are prcseribed for y = Y, by (29) or (30).
Thus we have a differcntial equatior (A.13) for G and two
toundary conditicns (A.9) and (A.10) at y = ¥

(o]
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